
MA 3232 - Numerical Analysis
Objectives and Course Overview

I. Introduction

This course responds to the needs of the engineering and physical sciences curricula by providing an
applications-oriented introduction to numerical methods/analysis. Rather than a pure discussion and anal-
ysis of methods, we shall often proceed from engineering and physical problems through a discussion of
methods by which such problems may be solved numerically. This sequence is more \natural" and more
like the one students actually follow when applying numerical methods within their areas of interest. For
example, a simple resistance network with an applied voltage leads to a system of linear equations, and to
a discussion of alternative methods for their computer solution and the costs and reliability of each.

Topics in nonlinear equations, eigenvalues and eignevectors, interpolation, numerical integration and
di®erentiation, and numerical solution of ordinary and partial di®erential equations will be similarly treated.
The discussion of approximate arithmetic and error propagation will also arise in a natural way.

II. Objectives

Upon successful completion of this course, one should be able to:

1. Describe di±culties that can arise because computers usually use non-decimal arithmetic with ¯nite
length representation.

2. List sources of error in computation, particularly to be able to identify when catastrophic cancellation
may occur in a given computation.

3. Apply the methods of bisection, false position, secant, and Newton to solve a given nonlinear equation.

4. State conditions under which the method of iteration (xn+1 = g(xn)) converges and show it converges
in a given case.

5. Apply the Newton-Raphson method to solve systems of nonlinear equations.

6. Construct Lagrange and Newton-Gregory forward di®erence interpolation polynomials for a given set
of data.

7. State and use the formulas for bounding the error in polynomial interpolation based on derivatives, and
for estimating error based on di®erences.

8. Describe the basic ideas and principles behind cubic spline interpolation, and its limitations.

9. Construct and apply formulas for approximating speci¯ed derivatives of functions by di®erentiation of
the appropriate Newton-Gregory interpolation polynomial. Estimate the error in calculated derivative
approximations.

10. Construct quadrature formulas with evenly-spaced nodes by integration of the interpolation polynomial.

11. Apply trapezoidal and Simpson's Rule quadratures in composite form to ¯nd the approximate value
of an integral. Estimate the errors in computed quadratures and use these estimates to improve the
original values.

12. State the idea behind the derivation of Gauss quadrature rules, and why they often work very well.
Apply given low order Gauss quadrature.
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13. Describe the basic concepts behind Runge-Kutta (R-K) methods for the initial value problem (IVP)
and apply specī c R-K methods in given problems.

14. State how multistep methods are derived and apply multistep predictor-corrector methods in given
problems.

15. State the advantages/disadvantages of single step and multistep methods for the IVP and when use of
each is recommended.

16. Explain the possible instability of the multistep methods.

17. State the de¯nition of the order of an interpolation, di®erentiation, or integration method, and describe
the relationships between the order of a given method and error estimation.

18. Describe the basic concepts behind and di®erences between shooting, ¯nite di®erence, Galerkin, ¯nite-
element, and Rayleigh-Ritz methods for ordinary di®erential equation boundary value problems, and
apply each in appropriate problems.

19. Describe what is meant by the error, the residual and the condition number in the context of numerical
solution of systems of linear equations, i.e. Ax = b and describe the relationship between them.

20. Describe and use the Jacobi, Gauss-Seidel and Successive Overrelaxation (SOR) iterative methods for
solving Ax = b; explain when such methods are used; give su±cient conditions for convergence; and
tell why SOR is usually superior to Gauss-Seidel, which in turn is usually superior to Jacobi.

21. Describe the basic concepts behind the normal equations for least squares, and the limitations of the
method. Apply the normal equations to solve a given overdetermined system of linear equations.

22. Compute low degree polynomial least squares curve ¯ts for given data.

23. Use power method iteration either to ¯nd the largest eigenvalue of a matrix or to re¯ne estimates of
other eigenvalues. Describe when any why the method should converge.

24. State the de¯nition of an orthogonal matrix, and why such matrices are important in numerical analysis.

25. Formulate the explicit ¯nite di®erence equations for a given parabolic, elliptic or hyperbolic partial
di®erential equation.

26. Describe the di®erence between implicit versus an explicit formulation of a partial di®erential equation,
and under what general conditions implicit formulations may be superior. Speci¯cally describe the
Crank-Nicholson formulation for the one-dimensional heat equation, and its advantages and disadvan-
tages.

27. Describe what the terms convergence, stability and consistency mean in the context of numerical solution
of partial di®erential equations.

28. Given library routines for the solution of the above problems as well as other utility routines, be able
to indicate how to use them in the solution of a larger problem involving the solution of several 'sub-
problems'.
For example:

Assume that routines for the solution of (1) a nonlinear equation and (2) an ordinary di®eren-
tial equation on the interval [a; b], as well as hardware and software for producing (3) appropriate
graphical output (e.g. curve plots). (Speci¯c information about input, output, and other require-
ments for these routines will be given.) The student may then be asked to outline (in English,
MATLAB, °ow charts, mathematical symbols, or a combination thereof) a program for solution of
the following problem:
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With y(x) de¯ned by
y0 = f (x;y)
y(a) = y0 ;

¯nd the smallest x¤ > a such that y(x¤) = 0, and plot y versus x on [a; x¤].
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